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1. Introduction

Evaluation of structural intensity in engineering structures is a field of increasing interest in
connection with vibration analysis and noise control. In contrast to classical techniques such as
modal analysis, structural intensity indicates the magnitude and direction of the vibratory energy
travelling in the structures, which yields information about the positions of the sources/sinks, as
well as the energy transmission path. Since structural intensity is directly related to the energy
level, proper damping treatments and mechanical modifications can then be adopted to dissipate
or divert the structure borne sound efficiently and effectively [1].
Since the first introduction and early developments of structural intensity concept [2–4], many

measurement methods and numerical prediction approaches have been proposed. For
measurement on plate-like structures (plates, shells and their assemblies, etc.), the determination
of structural intensity requires the information of surface velocity and stress, as well as the
associated phase relationship between them. The initial works [2–4] on structural intensity
measurement are mainly conducted with contact transducers such as accelerometers and strain
gauges. Later, to overcome the obvious drawbacks of such method, e.g. additional weight
introduced by the sensors, non-contact measurement method is proposed based on near-field
acoustic [5]. Currently, optical measurement using laser Doppler vibrometer (LDV) or scanning
see front matter r 2005 Elsevier Ltd. All rights reserved.
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LDV has become a popular technique in the experimental study of structural intensity
[6,7,9,10,12,14]. Besides the experimental study, numerical prediction of structural intensity using
finite element method (FEM) has also been developed [1,8]. However, because of the difficulty to
accurately model the real boundary conditions and dynamic loadings of the structures, the
experimental study is preferable to numerical simulation for determination of the structural
intensity under various operating conditions.
According to the theoretical formulations for plate-like structures, the structural intensity can

be experimentally determined by the measured normal velocity and its spatial derivatives if only
the flexural waves are considered. As only the normal velocity or displacement can be obtained
through the vibration measurement, finite difference approximation or spatial Fourier transform
(SFT) is usually adopted to get the necessary high-order derivatives. The finite difference
approximation is first used in Refs. [2,3]. When the contact measurement method is used, finite
difference approximation is an appropriate way due to the limited number of measurements. For
spatial dense measurements using optical techniques or likes, SFT is usually employed to extract
the structural intensity from the velocity measurements [5,9,10,14]. The superiority of SFT over
finite difference approximation has been addressed in Refs. [9,10].
The key to calculate the structural intensity through SFT is to obtain a good estimation of the

wavenumber spectrum (k-space) that results in an accurate representation of the spatial
derivatives. Since high-order derivatives are required in the structural intensity formulation, errors
in the estimation of wavenumber spectrum, especially at high wavenumber, may be greatly
magnified and lead to serious distortion in the calculated structural intensity. Therefore, low-pass
k-space filter is usually used to remove noise at high wavenumber. The characteristics and
performance of the k-space filtering have great effects on the accuracy of the structural intensity
calculation [9,14].
Geometrical discontinuities (e.g. holes) and non-periodic vibration velocity field (e.g. in a finite

plate) often exist in real structures, which may result in large distortions in the estimation of
wavenumber spectrum. Irregularly shaped plate and non-equally-spaced measurement points can
also pose a challenge to the calculation since rectangular measurement zone and equally spaced
data are assumed in the implementation of SFT. Regressive discrete Fourier transform can
minimise the errors due to non-periodicity and is also able to deal with non-equally-spaced and
non-rectangular-domain data [11]. However, the algorithm is sometimes hard to be automatically
used because of trial-and-error parameters [10]. Windowing [14] and mirror processing [10] can be
used prior to SFT to minimise the leakage effect due to signal non-periodicity. Although, these
methods may partially solve the problems mentioned above with additional operations, useful
information may be lost through windowing [14]. Hence, a better data processing scheme may
benefit the structural intensity measurement in practice.
B-spline approximation is a common tool for representing and differentiating arbitrary

scattered measurement data. If the measured velocity data are approximated with B-splines of
degree n, then the derivatives up to (n� 1) order of the measurement data can be obtained based
on the properties of B-spline approximation. Therefore, structural intensity can be calculated
from measured velocity data by B-spline approximation. However, like in the case of SFT, issues
such as k-space filtering must be investigated to guarantee the accuracy and reliability of the
obtained results. In Ref. [12], a B-spline approximation-equivalent procedure is introduced to
visualise the spatially continuous power flow (structural intensity) in a simply supported plate.
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The capability of the proposed method is illustrated through comparing the model convergence of
various different meshes.
The present work investigates the performance of B-spline approximation in structural intensity

calculation from the viewpoint of k-space filtering. Relationship between parameters of B-spline
approximation (mesh size) and the k-space filter is established, which can help to choose the
appropriate mesh size and improve the understanding of the application of B-spline
approximation in the structural intensity. In addition, as an advantage of B-spline approximation,
the capability of dealing with discontinuities and non-periodicity in signal is also discussed.
Finally, vibration measurement is carried out on a thin aluminium plate with arbitrary boundary
conditions and the structural intensity distribution calculated is presented and discussed.
2. Formulas for structural intensity

The expressions for structural intensity in plate-like structures have been well established in
literatures [1–3,10,13,14]. Therefore, only a brief outline is presented here.
Structural intensity is defined as the net energy flow per unit area in the given directions. This

definition of structural intensity has the same physical meaning as the acoustical intensity in a
fluid medium. The structural intensity in nth direction in frequency domain is given by [13]

In ¼ �
1
2
Reð ~snl ~v

�
l Þ; n; l ¼ 1; 2; 3, (1)

where ~s is the complex amplitude of stress, ~v�l is the complex conjugate of the velocity. Here,
� represents complex quantities and � indicates complex conjugate.
In plate-like structures, structural intensity can be conveniently defined as the net energy flow

per unit length in a given direction. For thin plates, if only the flexural waves are considered, the
structural intensity in x and y directions can be written in terms of the normal velocity vðx; yÞ [10],
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where B ¼ Eh3=12ð1� u2Þ is the bending stiffness coefficient, E is Young’s modulus, h is the plate
thickness, u is the Poisson ratio and o the angular frequency.
Therefore, the structural intensity in plates can be determined solely from knowledge of the

transverse movements, in the form of products of different space derivatives of the vibration
velocity in the normal direction.
3. Calculation of structural intensity with B-spline approximation

After the data acquisition in an experiment, a set of discrete velocity data points
(xr; yr; v̂rÞ; r ¼ 1; . . . ;m, with (xr; yr) over the measurement region R ¼ ½a; b� � ½c; d�, are obtained.
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According to Eq. (2), derivatives of normal velocity vðx; yÞ up to third order must be determined
to extract the structural intensity.
B-spline approximation is well suited for estimating multiple-order derivatives. In order to

implement the approximation, the region R is subdivided into ðgþ 1Þ � ðrþ 1Þ subrectangles with
given knots li, i ¼ 0; . . . ; gþ 1 ðl0 ¼ a; lgþ1 ¼ b), in the x direction and mj, j ¼ 0; . . . ; hþ 1
ðm0 ¼ c;mhþ1 ¼ dÞ, in the y direction. Suppose B-spline of degree n is employed in both x and y

direction, and (li;mj) are equally spaced over R, then the approximation vðx; yÞ of the measured
velocity v̂r can be expressed as a tensor product spline [15],

vðx; yÞ ¼
XX

ai;jNiðxÞNjðyÞ,

i ¼ �
n� 1

2
; . . . ; gþ

nþ 1

2
; j ¼ �

n� 1

2
; . . . ; hþ

nþ 1

2
, (3)

where ai;j are the coefficients to be determined. NiðxÞ and NjðyÞ are obtained by scaling and
shifting the symmetrical B-spline of degree n, bn

ðxÞ,

NiðxÞ ¼ bn
ððx� iÞðgþ 1Þ=ðb� aÞÞ, (4a)

NjðyÞ ¼ bn
ððy� jÞðhþ 1Þ=ðd � cÞÞ. (4b)

The requested coefficients ai;j are determined by minimising the errors between the measured
velocity and the approximated one. Here, least-squares criteria is adopted to minimise the squared
residual error

Q
, which is defined as Y

¼
X
ðvi � v̂iÞ

2. (5)

With the coefficients ai;j solved, the velocity at any point ðxi; yjÞ 2 R can then be computed from
Eq. (3). Because the basis function bn

ðxÞ leads to splines that is continuous in the ðn� 1Þth
derivative and smooth derivative in the ðn� 2Þth order, n ¼ 5 is chosen in this paper. As a result,
the reconstructed velocity field is able to offer the third-order smooth derivatives necessary for the
structural intensity calculation.
4. Performance discussion

Since structural intensity is only a fraction of the total vibratory energy in the structures and
high-order derivatives are used in its calculation, it is very sensitive to the noise in the
measurement data. The mesh size of the B-spline approximation affects the accuracy of the
structural intensity calculated greatly. If a coarse mesh is used, useful information may be lost.
However, if the mesh is too fine, too much noise may be kept in the reconstructed velocity field
and results in distorted structural intensity map. The relationship between the mesh size and the k-
space filtering is investigated here. With the relationship established, one can locate the
appropriate mesh conveniently and reduce the trial times. After that, the capability of dealing with
signal discontinuities and non-periodicity is discussed.
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4.1. k-space filtering

The purpose of filtering is to remove the noise-contaminated components, especially at high
wavenumbers. According to the principle of modal superposition, when a system is excited with a
single frequency f , all of its eigenmodes are excited but with different degrees of strength.
Although the overall response of the structure is a combination of all its natural mode shapes,
usually only those modes that make a significant contribution to the motion need to be considered
to determine the structural response. Therefore, the filter should be selected as such that it is
capable of removing the noise at high wavenumbers (corresponding to high frequencies) while
keeping the significant mode shapes at the same time.
When SFT is used, an oval filter is usually employed. It is a low-pass k-space filter, and can be

described as follows [14]

F ðkx; kyÞ ¼

1�
e�a

2
for roc

e�a

2
for r4c

8>><
>>:

(6)

where a ¼ ð1� r=cÞ=s, r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2
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y

q
, c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2x þ c2y

q
, c2x=a2x þ c2y=a2y ¼ 1, and s controls the filter

slope. The bandwidth of the low-pass filter can be adjusted in kx and ky direction by changing the
values of ax and ay. The determination of the filter parameters, i.e., ax, ay and s is a trial-and-error
process.
The following work demonstrates that the low-pass filtering can also be realised through the

least-squares B-spline approximation described in Eq. (3). Generally, least-squares B-spline
approximation is used as a data reduction method [17], but it is considered as a noise reduction
procedure in this work. In order to illustrate the low-pass filtering effect of B-spline
approximation, take a B-spline function sðxÞ in one dimension for example,

sðxÞ ¼
Xþ1

i¼�1

cib
n
ðx� iÞ. (7)

Here, ci is the B-spline coefficients. Eq. (7) can be seen from another perspective by expressing sðxÞ
in terms of the discrete function values themselves [16]

sðxÞ ¼
Xþ1

k¼�1

sðkÞZnðx� iÞ, (8)

where ZnðxÞ is the cardinal spline corresponding to bn
ðxÞ. Evaluating the function sðxÞ in Eq. (8) at

an integer value i, gives,

sðiÞ ¼
Xþ1

k¼�1

gðkÞZnði � kÞ (9)

which has the exact form of a discrete convolution. The cardinal spline ZnðxÞ, evaluated at integer
values, is digitally convolved with the sampled values of the function gðxÞ. Therefore, ZnðxÞ works
as a digital filter. Aldroubi et al. [16] further proved that the frequency response of the cardinal
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Fig. 1. Fourier transform of the cardinal quintic spline Z5ðxÞ.
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spline converges to the ideal low-pass filter sincð f Þ ¼ ðsinðpf Þ=pf Þ as the order n tends to infinity.
Fig. 1 displays the Fourier transform of the quintic cardinal spline Z5ðxÞ. Apparently, Z5ðxÞ works
as a low-pass filter and the upper cut-off frequency, f c, is also indicated in Fig. 1.
The results in the one-dimension case are directly applicable to the two-dimensions case

through the use of tensor product splines. Thus, after approximation, only components with
wavenumbers kx and ky satisfying the following conditions are kept in the reconstructed velocity
field

kxo2pf cððhþ 1Þ=ðb� aÞÞ, (10a)

kyo2pf cððgþ 1Þ=ðd � cÞÞ. (10b)

Hence, the k-space filtering needed to calculate the structural intensity is implemented. Based on
Eqs. (10a) and (10b), the bandwidth of the low-pass filter can be easily adjusted by changing the
values of h and g. The finite element-based procedure in Ref. [12] is equivalent to the
approximation process described in this article. If a uniform mesh is adopted with a mesh size
lx � ly, the band limits of the k-space filtering are then kxo2pf cð1=lxÞ and kyo2pf cð1=lyÞ,
respectively.
It is worth noting that, in contrast to the oval filter usually used in SFT, the low-pass filter used

here is rectangular. The difference in the shape of the two filters is shown in Fig. 2 by applying the
two methods to a white noise field, respectively. Fig. 2(a) illustrates the 2-D k-spectrum of the
white noise field with an oval low-pass filter. Fig. 2(b) shows the k-spectrum of the reconstructed
data field with B-spline approximation.
4.2. Signal irregularities

One basic property of B-splines is local support [15], which means that the defined segments in
Eq. (3) depend just on a few of the coefficients. These coefficients in turn depend on locally
measured data. As a result, discontinuities due to holes, irregular scanning shapes, etc., can be
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approximation.
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manipulated with little effect on the overall performance of the reconstructed velocity field.
Another important issue is that both the knots in Eq. (3) and the measured points are not
necessarily equally spaced, which means the velocity field can be reconstructed with different
resolutions over the sub-regions of interest. One application of this property is to refine the
structural intensity near sources/sinks, where sharp changes exist in the velocity field.
For finite structures, the velocity on the boundaries of the measurement surface is not

necessarily zero. As mentioned earlier, the resulting non-periodicity may cause great distortion in
the wavenumber domain if SFT is directly performed. In order to minimise the distortion,
windowing or mirror processing is often adopted. Since B-spline approximation does not assume
that velocity is periodic at the boundaries, no special care is needed to treat the boundary
conditions in this method. Fig. 3 shows an original velocity data compared to the data obtained
by reconstructing the same data polluted with 15% white noise. The data along the four edges are
not zero. That is, the non-periodic boundaries exist. It can be seen from Fig. 3(c) that the data can
be reconstructed accurately through B-spline approximation, without any other special measures
to deal with the non-periodic boundaries.
5. Experimental example

This section shows an example of calculating structural intensity through B-spline
approximation. A simply supported plate excited by two phased shakers to act as energy source
and sink is employed as the test object. The mesh size of the B-spline approximation is determined
according to the relationship established in Eq. (10). The aim here is to examine whether the
structural intensity calculated is able to locate the energy source/sink and determine the dominant
path of power flow within the test plate.
Fig. 4 shows the diagram of the experimental set-up. The experiment was carried out on a

320mm long and 230mm wide aluminium plate, with a thickness of 2mm. In order to
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demonstrate the capability of B-spline approximation to deal with non-periodic boundaries, the
plate is mounted in such a way that two long edges are fixed to a rigid fixture with 6 screws and the
other two short edges are set free. Two phased micro-shakers are employed to harmonically excite
the plate with a constant frequency of 168Hz. One arbitrary waveform generator and two force
transducers are used to produce the two phased harmonic excitation signals and a PSV-300
scanning LDV is adopted to measure the vibration velocity. The schematic of the plate, the
locations of the two shakers and the scanned area are shown in Fig. 5.
A complex velocity field over a 72� 50 grid is scanned. Fig. 6 shows the root-mean-square

(rms) velocity distribution. As expected, the velocities along all the four edges are not all zero due
to the mounting conditions.
When excited harmonically at frequency f , the strong wavenumber components in the plate,

correspond to the structural wavenumber defined by

ks ¼

ffiffiffiffiffiffiffiffi
2pf

p
ffiffiffiffiffiffiffiffiffi
B=r4

p (11)
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Fig. 6. Root mean square velocity distribution of the test plate with two shakers harmonically excited at 168Hz.
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and adjacent modes. r is the mass per unit area. In order to reconstruct the measured velocity
field, the scanned area is subdivided into 3� 2 subrectangles uniformly. According to Eq. (10), the
cut-off wavenumbers in kx and ky direction are 31.4 and 29.8, respectively, which are about 1.8
times as large as the structural wavenumber ks ¼ 17:4 estimated by Eq. (11). Therefore, the
dominant wavenumber components are kept in the reconstructed velocity field, while noise at
higher wavenumber is removed.
Fig. 7 shows the extracted structural intensity field over the plate using B-spline approximation.

The two large black dots on the plot represent the relative size and location of the two shakers. It
can be seen from Fig. 7 that the two shakers are clearly localised from the structural intensity
map. Moreover, the intensity vectors around shaker 1 are convergent while those around shaker 2
are divergent. It implies that shaker 2 works as the energy source, however, shaker 2 works as an
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energy sink rather than a source during the excitation, and vibratory energy transmission does
exist between the two shakers, similar to the results observed in Refs. [5,12].
In practice, structural intensity is usually used to locate the sources/sinks of energy and

determine the dominant energy transmission path within the structure. If this is the case, it is clear
that the mesh size chosen here fulfils the task successfully. When the accurate power injected into
the structure is expected, a convergence procedure [12] may be employed to further determine the
optimal mesh. However, with the knowledge of the relationship between mesh size and the k-
space filtering, one can at least reduce the trial time to locate the proper mesh.
Some intensity vectors at the boundaries of Fig. 7 point to the wrong direction unexpectedly. It

is not suggested that these are the correct values or representation of the structural intensity. One
reason for this error is that less data is used to solve for the B-spline coefficients at the boundaries.
Hence, it is suggested that a larger area than that of interest be scanned at the stage of velocity
measurement.
6. Conclusion

The k-space filtering effect associated with the application of B-spline approximation
in experimental determination of structural intensity is investigated. It is demonstrated that the
B-spline approximation acts as a low-pass filter in the calculation, similar to the one usually used
in SFT. The relationship between the mesh of the B-spline approximation and the k-space filtering
is established. As B-spline approximation does not require the velocity data to be periodic in space
and equally spaced, it has advantages over conventional method if the structure is geometrically
complex. The structural intensity on a thin aluminium plate is calculated using B-spline
approximation. The source/sink location and power flow distribution are clearly indicated
without any special measures taken to deal with the arbitrary boundary conditions.



ARTICLE IN PRESS

C.Q. Wang et al. / Journal of Sound and Vibration 290 (2006) 508–518518
References

[1] L. Gavric, G. Pavic, A finite element method for computation of structural intensity by the normal mode

approach, Journal of Sound and Vibration 164 (1) (1993) 29–43.

[2] D.U. Noiseux, Measurement of power flow in uniform beams and plates, Journal of the Acoustical Society of

America 47 (1970) 238–247.

[3] G. Pavic, Measurement of structure borne wave intensity—part I: formulation of the methods, Journal of Sound

and Vibration 49 (2) (1976) 221–230.

[4] J.W. Verheij, Cross-spectral density methods for measuring structure borne power flow on beams and pipes,

Journal of Sound and Vibration 70 (1) (1980) 133–138.

[5] E. Williams, H. Dardy, R. Fink, A technique for measurement of structure-borne intensity in plates, Journal of the

Acoustical Society of America 78 (1985) 2061–2068.

[6] S.I. Hayek, M.J. Pechersky, B.C. Suen, Measurement and analysis of near and far field structural intensity by

scanning laser vibrometery, in: Proceedings of the Third International Congress on Intensity Techniques, Senlis,

France, 1990, pp. 281–288.

[7] R. Morikawa, K. Nakamura, S. Ueha, Structural intensity derivation using normal and in-plane vibration

displacements measured by a laser Doppler vibrometer, in: Proceedings of Inter-Noise, Vol. 1, Newport Beach,

USA, 1995, pp. 637–640.

[8] S.A. Hambric, Power flow and mechanical intensity calculations in structural finite element elements, Journal of

Vibration and Acoustics 112 (1990) 542–549.

[9] R. Morikawa, S. Ueha, Error evaluation of the structural intensity measured with a scanning laser Doppler

vibrometer and a k-space signal processing, Journal of the Acoustical Society of America 97 (1996) 2913–2921.

[10] J.C. Pascal, J.F. Li, X. Carniel, Wavenumber processing techniques to determine structural intensity and its

divergence from optical measurements without leakage effects, Shock and Vibration 9 (2002) 57–66.

[11] J. Roberto, R. Arruda, Surface smoothing and partial spatial derivatives computation using a regressive discrete

Fourier series, Mechanical Systems and Signal Processing 6 (1) (1992) 41–50.

[12] J.D. Blotter, R.L. West, S.D. Sommerfeldt, Spatially continuous power flow using a scanning laser Doppler

vibrometer, Journal of Vibration and Acoustics 124 (2002) 476–482.

[13] L. Gavric, U. Carlsson, L. Feng, Measurement of structural intensity using a normal mode approach, Journal of

Sound and Vibration 206 (1) (1997) 87–101.

[14] Y. Zhang, J.A. Mann III, Measuring the structural intensity and force distribution in plates, Journal of the

Acoustical Society of America 99 (1996) 345–353.

[15] P. Dierckx, Curve and Surface Fitting with Splines, Oxford Science Publications, Oxford, 1993.

[16] A. Aldroubi, M. Unser, M. Eden, Cardinal spline filters: stability and convergence to the ideal interpolator, Signal

Processing 28 (1992) 127–138.

[17] M. Unser, A. Aldroubi, M. Eden, B-spline signal processing, IEEE Transactions on Signal Processing 41 (1993)

821–833.


	On the application of B-spline approximation �in structural intensity measurement
	Introduction
	Formulas for structural intensity
	Calculation of structural intensity with B-spline approximation
	Performance discussion
	k-space filtering
	Signal irregularities

	Experimental example
	Conclusion
	References


